电源设计技术信息网站

订阅电子杂志   English   繁體中文   日本語   한국어

下载中心

TECH INFOArduino入门指南

CMUcam5 Pixy视觉相机传感器简介

这篇文章来源于DevicePlus.com英语网站的翻译稿。

camera sensor

PixyMon 和 Arduino

该项目的目标是向您介绍CMUcam5 Pixy,并展示如何在您自己DIY的项目中实现相机功能,您会发现即使对于一个复杂的机电系统(比如轮式自主机器人)来说,这也是非常简单易执行的操作。Pixy是一种灵活、紧凑、可调节且易于设置的相机传感器,能够检测并传递某些类型对象的信息。我们将介绍有关相机的基础知识,并了解在Pixy和Arduino之间进行通信的一般方法。

硬件

  • • Arduino Uno (您可以使用任何 Arduino)
  • • CMUcam5 Pixy 相机
  • • 伺服电机 (S06NF)
  • • 一小块木头(用来将相机安装到伺服上, 我将只使用螺丝安装)
  • • 线缆 (用于相机USB MINI 以及Uno USB B)
  • • 用于伺服的外接5V电源(警告!如果您将伺服连接到您的Arduino上,并通过USB供电,您的 Arduino将会被烧坏)。

 

软件

  • • Arduino IDE 1.6.9
  • • PixyMon 软件
  • • 用于Arduino的PixyMon库

 

camera sensor

图1:CMUcam5 Pixy相机

CMUcam5 Pixy是一款小型、易于操作、成本低且开源的相机。它拥有独立的处理器,每秒可对探测到的信息进行50次输出。它还可以与Arduino、Raspberry Pi等连接。CMUcam5 Pixy使用非常常见的接口,例如SPI、12C、UART以及USB,并且具有一个自定义程序,可让您连接到您的设备上,点击此处可以免费下载。

 

设置Pixy

点击此处下载软件PixyMon并安装。安装时,请通过USB连接Pixy,然后检查RGB Led灯是否亮起。

打开PixyMon,并确保Pixy是通过USB进行连接的。如果所有连接正确,它将输出相机所“看到”的内容。例如,我放置了一个紫色的盖子作为测试对象,来检查Pixy相机的输出。

camera sensor

图2:Pixy Raw输出图像

进入“Action”子菜单,并点击“Set Signature 1”,视频将会停滞,您可以选择想要用相机检测的颜色/对象。

camera sensor

标记好颜色/对象后,视频将会开始播放,并且相机传感器将会对颜色/对象进行检测,如图3所示。在同一时间,您最多可以设置7个想要检测的对象/颜色。如果您进行了正确标记,并且设置了视野范围,就可以实现对多个对象/颜色的检测。

camera sensor

图3:Pixy检测下的视图

如果想要清除预设标记,您可以点击Action -> Clear All Signatures,直接清除所有标记 ,或者选择Clear Signature 来对标记一一清除(在控制页面输入标记编号)。

点击Settings -> Signature 1进行调整,您可以修改Pixy视野尺寸的大小。

其他设置(File -> Configure

  • • 通过更改相机亮度,您可以在黑暗环境中进行信息探测。
  • • 在 Camera 选项中,您可以调整白平衡,这非常有用。
  • • 使用 Action -> Default 程序,您将只看到所检测到的颜色,没有视频输出。

有一个专用于在您的Arduino上使用Pixy的自定义库。我使用的是Arduino Uno,但是您可以使用任何版本。这个库非常有用,不仅为初学者提供了简单的示例,也为专家提供了绝佳的开发平台。

首先,我们要设置一个检测对象,类似于我们之前在设置相机时所进行的操作。

点击此处下载Arduino库(在“Arduino libraries and examples ”文件夹下)。[http://www.cmucam.org/attachments/download/1157/arduino_pixy-0.1.7.zip]。这将实现您的Arduino和Pixy相机之间的通信。然后,将其添加到Arduino IDE(Sketch -> Include Library -> Add .zip Library)。

点击Example->Pixy->hello_world,打开一个名称为hello_world的简单示例。

camera sensor

将其上传到您的开发板上,并打开终端(Tools -> Serial Monitor)。

此时,您将看到一条信息,显示“Starting… ”,然后将显示有关检测到的对象的信息。

hello_world代码释义

setup() 函数中,对编号和pixy进行初始化和相关设置。

loop() 函数包含几个变量,这些变量用于打印以及从pixy获取模块。使用 pixy.getBlocks() 函数,我们可以获取检测到的对象。if (i%50==0) 代码可以用来设置我们想要获取信息的FPS。如果我们想要每秒钟获取一条信息,就要写 %1 而不是 %50

/*
 *  explaining the (((pixy.blocks[j].x)/2)+10)-60
 *  with pixy.blocks[j].x we get the x position of the object detected
 *  we divide it because the max value it can read is 320
 *  I did the + 10 for small adjustments 
 *  the -60 is used for rotating away from the object
 */
 
#include <Servo.h>
#include <Pixy.h>
 
Servo myservo;  // create servo object to control a servo
Pixy pixy;  	// create pixy object for controlling the pixy camera
 
// function for testing the servo
void test_camera(){ 
  myservo.write(0);
  delay(1000);
  myservo.write(90);
  delay(1000);
  myservo.write(180);
  delay(1000);
  myservo.write(90); // get the camera centered
}
 
void setup() {
  //Serial.begin(9600); // initialize serial
  myservo.attach(9);	// attaches the servo on pin 9 to the servo object
  test_camera();    	// executing testing for the servo
  pixy.init();      	// initing the pixy camera
}
 
void loop() {
  //variables
  static int i = 0;
  int j;
  uint16_t blocks;
  char buf[32]; 
  int32_t xpos;
  
  // grabing the blocks
  blocks = pixy.getBlocks();
  
  // If there are detect blocks
  if (blocks)
  {
	i++;
 
	// we are using 50FPS 
	if (i%50==0)
	{
  	sprintf(buf, "Detected %d:\n", blocks);
  	for (j=0; j<blocks; j++)
  	{
    	sprintf(buf, "  block %d: ", j);
        
    	//Serial.println((((pixy.blocks[j].x)/2)+10)-60); //print out to what position will the servo go
 
    	// this is used so the servo can't get stuck at minimum and maximum values
    	if(((((pixy.blocks[j].x)/2)+10)-60) > 180 || ((((pixy.blocks[j].x)/2)+10)-60) < 0 ) 
    	{
      	myservo.write(90);  // if at min or max go to the middle
    	}
    	else{
 
    	// if there is no problem with min and max
    	myservo.write((((pixy.blocks[j].x)/2)+10)-60);
    	}
  	}
	}
  }
}

 

sprintf(buf, “Detected %d:\n”, blocks); 输出由ID检测到的当前对象,并将必要的数据放入缓冲区。在for循环中,我们将会获得所有类型的信息,包括检测对象、宽度、高度、x、y以及标记信息。

camera sensor

通过伺服进行控制

现在,Pixy已经成功连接到了Arduino,我将做一个简单的实验,将Pixy连接到伺服,并且在相机“看到“某种类型的颜色/对象时让伺服控制离开。

在本实验中,我将把Pixy的检测对象设置为圆形紫色容器,然后进行编程,这样一来,每当这种容器进入相机的视野,伺服就会控制离开这个物体。

装置结构:

camera sensor

图4:已完成的装置结构

我使用的是S06NF伺服,并且用小螺丝钉将伺服连接到相机上,如图5所示。

camera sensor

图5:相机与伺服电机连接

对于硬件部分,仅进行简单的接线。将SPI线缆连接到相机上,将伺服与Arduino连接。我使用引脚9来控制伺服。

camera sensor

图6:接线图

警告!

不要忘记连接GND。如果您没有将电源、伺服和Arduino GND连接在一起,伺服器将会奔溃!

这里,我使用的是用于5V电源的旧型适配器。

总结

在本教程中,我们介绍了PixyMon相机的基础知识,并且开发了一个简单的伺服驱动应用。我们创建了一个会离开检测对象而不是对象追踪的系统。在第二部分中,我们会继续深入拓展这个理念,开发出一种具有多个伺服的交互系统,通过将一个球作为对象,实现对桌子方位的控制。

如果您有任何意见或疑问,请在Google +上留言,并关注我们的动态。

继续阅读本文的第二部分 >

Silard Gal
Silard Gal

Silard来自塞尔维亚,热爱与电子和编程有关的所有事物。喜欢使用Arduino、Raspberry Pi、Atmel等来创建各种项目,并为成为自主机器人团队的一员而感到自豪。

分享到社交媒体