通过控制一次侧 使二次侧稳定的手法

-仅看电路图的话,好像是不稳定的绝缘电源,那么稳定性如何呢?

当然很稳定。下面说明一下BD7F系列是如何使输出稳定的。看图解说更容易理解,请看下图。

flyback_new

图左侧的电路图是DB7F系列的简略电路方框图和外置变压器及二次侧整流电路。右侧是各节点的电压(Vx)和电流(Ix)波形。

且说没有来自二次侧的反馈,是如何进行稳定化的。组成一次侧反激电压Vsw的成分中含有Vout,因而通过监测Vsw并进行运算,来间接检测Vout进行稳定化控制。

再稍微详细地说明一下,请看图中的波形和公式。Vsw是一次侧反激电压,是变压器的一次侧绕组的一端和这个IC的SW引脚连接的节点中,内置开关(MOSFET)关断时产生的电压。该Vsw表示“变压器的匝数比(一次侧Np/二次侧Ns)”乘以“Vout与输出整流二极管Vf的和”的值加上“Vin”的电压。简单地讲,产生与变压器的匝数比成正比的(Vout+Vf)电压加上Vin的电压。比起文字描述,看图和公式更容易理解。补充一点。该公式为了便于理解而进行了简化。这里将(Vout+Vf)作为二次侧产生的电压,严密地讲,(Vout+Vf)需要加上“二次侧的总阻抗(绕组电阻和ESR)×Is”的电压。该项会导致误差,因此用来设计的计算需要考虑进去。

-现在了解了利用一次侧的反激电压。关于运算,如果不是特别难,能否指教一二?

我认为原理上并不是很难。虽说如此,还是有图和公式更容易理解。再次利用图和式进行说明。图中两处用圆圈圈起来的部分是关键之处。另外,详情在产品的技术规格书中有记载,技术规格书中的公式不是前面的简化公式,而是含有二次侧电压全项的公式,为便于统一接下来使用技术规格书中的公式。符号的标示(小写、下标)略有不同,但意义相同。

flyback_new1

首先,下面是基本公式。VSW是SW引脚的反激电压。给前面的简化公式添加了“IS×ESR”。

fom0

VSW通过电阻RFB转换为电流IRFB。FB引脚的电压VFB利用与VIN的差分电路达到与VIN几乎相等的电压。请记住该工作是环路控制,与运算放大器的差分电路思路相同。用公式表示IRFB如下。

fom1

可以看出,VFB≒VIN,因此VSW减去VIN(VFB)后的电压除以RFB,即等于IRFB。这样,公式中出现了VOUT项。下面来求VOUT

由于这个IRFB流过电阻RREF,因此REF引脚的电压VREF的公式如下。
IRFB已经展开了,收回后当然就是VREF=RREF×IRFB

fom2

请看方框图。REF引脚的电压被输入IC内部比较器的非反相引脚,并与反相引脚的基准电压(0.78V)进行比较。一般的控制IC中,这里是误差放大器,但在这款IC中是使用了比较器的控制方式,因此是比较器。思路与误差放大器相同,REF引脚(比较器的反相输入)的电压等于基准电压(0.78V)。所以,输出电压VOUT和REF引脚的电压VREF的关系如下列公式。

fom3

也就是说,输出电压VOUT由变压器的匝数比、RFB和RREF的电阻比决定。VF和IS×ESR是引发输出电压误差的因素。

-原来如此。现在明白了是通过环路控制一次侧的反激电压,来间接地使输出电压稳定。设计时,只要根据这些公式来设置输出电压就可以了吧。

是的,这样即可。在技术规格中,RREF的标准值是3.9kΩ,VREF是0.78V(typ),因此基于这些即可设置输出电压。另外,技术规格中还提供了应用电路示例和推荐变压器,所以请务必仔细阅读技术规格。

-以上请您解介绍了无需光耦和辅助绕组的关键原理,下次将请您介绍一下DB7F系列IC的功能和特征。

(未完待续)

无需光耦的隔离型反激式DC/DC转换器 Part 1

Related post

  1. I-9_graf02

    减轻环境负荷的电源技术发展趋势 Part 3 : 一项可以减少工业废弃物的技术 : 无线供电

  2. 不仅要了解电气规格, 还要了解包括材料和规格在内的特性

  3. 交流电分析图示

    功率因数改善和高效率兼顾的AC/DC转换器控制技术 : 如果采用功率因数校正电路 电源效率会下降?

  4. 43种机型的丰富变化是有原因的

  5. 实现业界顶级的80V高耐压与高效率的DC/DC转换器 仅高耐压无法解决用户的课题

  6. 0512_graf06

    最先进的同步整流转换器是工业设备省力化与小型化的关键

  7. 基于对技术的相互了解 从整体上完善热设计很重要

  8. 现有AC/DC课题

    现有AC/DC转换器的课题是效率与尺寸

  9. TY-2-2_wind1

    电感及 整体总结

TECH INFO

  • 重点必看
  • 技术分享
  • Arduino入门指南

基础知识

  • SiC功率元器件
  • Si功率元器件
  • 热设计
  • 仿真
  • 开关噪声-EMC
  • AC/DC
  • DC/DC
  • 电机
  • 传递函数

工程技巧


PICK UP!

  1. 刘铭
  2. 以纳米级输出电容实现稳定控制的Nano Cap™技术:无需输出电容器的线性稳压器
  3. arduino explorer rover
  4. 作为车载用二次电源而开发的同步整流降压型DC/DC转换器 : 车载设备中二次电源的优点
  5. 模块配置
  6. “第三代 行驶中无线供电轮毂电机”开发成功:超小型SiC模块 助力实现无需担心充电的EV
  7. ROHM开发出业界先进的第4代低导通电阻SiC MOSFET:支持xEV/EV主机逆变器和电池提高电压
PAGE TOP