热阻数据:实际的数据示例

上一篇文章中介绍了与热阻数据相关的JEDEC标准和测试环境等内容。本文将会给出实际的热阻数据示例。
实际的热阻数据示例
通常在IC的技术规格书中都会提供IC热阻相关的信息。但是,所提供的热阻类型和设置可能会因IC的种类(例如用于信号处理的低功耗运算放大器、用于供电的热设计很重要的稳压器等)不同而略有不同。另外,也会因IC制造商而异。
下面是500mA输出LDO线性稳压器的技术规格书中提供的热阻信息示例。

BD18353EFV-M/BD18353MUF-Mのデータシートから抜粋した実際の熱抵抗データ

这款IC有两种封装,因此提供了每种封装(TO263-5、TO252-J5)的热阻。顺便提一下,这两种封装都是带散热片的电源系统5引脚表贴型封装。
下面来看一下具体内容。如Note 1所示,该热阻数据符合前文所述的 JESD51-2A(Still-Air)标准(红框部分)。
提供的热阻为以下两种:
・Junction to Ambient:θJA(℃/W)
・Junction to Top Characterization Parameter:ΨJT(℃/W)
此外,还给出了每种热阻在两种电路板条件下的值,一种是安装于1层电路板上,另一种是安装于4层电路板上。1层电路板如Note 3所示是符合JESD51-3的电路板,4层电路板是符合JESD51-5和7的电路板(Note 4)。表中列出了每种电路板的条件。
热阻与实装电路板之间的关系
在上例中,作为热阻条件,明确列出了JESD51中规定的实装电路板的条件。这意味着热阻不仅仅由IC封装决定,很大程度上还受到其实装电路板条件的影响。近年来,表贴型封装的应用非常广泛,在考虑IC的热阻时,必须要考虑到实装电路板的散热(降低热阻)情况。仅根据封装的热阻进行热计算是不现实的。

该图显示了每种热阻(θJA、ΨJT)与散热用的铜箔面积之间的关系。这是用于测试的封装为背面带散热片的8引脚SOP型封装、铜箔面积为15.7mm2到1200mm2条件下的数据。其他因素还包括电路板层数、材料和铜箔厚度等,不过在这个关系示意图中,请将这些因素视为条件相同,在此前提下来看铜箔面积与热阻之间的关系。
IC実装基板銅箔面積と熱抵抗の関係を示すグラフ

在本例中,从IC的结点(芯片)经由实装电路板到环境(大气)的热阻θJA和铜箔面积的关系非常显著。实际上,需要确保散热所需(即适当的θJA)的铜箔面积,以免在使用条件下超过Tjmax。
反之,如果未明确说明所提供的热阻的条件,则必须要确认其条件。上例中的数值表明,热阻会因条件不同而有很大不同。

关键要点:

・IC的技术规格书等资料中通常会提供热阻数据,但内容可能会因IC的类型和制造商而异。
・热阻因实装电路板的条件不同而有很大差异,因此必须确认测试条件。

相关文章

  1. TD1_16_f04

    表面温度测量:热电偶测量端的处理

  2. TD1_16_f03

    表面温度测量:热电偶的安装位置

  3. TD1_16_f02

    表面温度测量:热电偶的固定方法

  4. TD1_16_f01

    表面温度测量:热电偶的种类

  5. TD1-10_f2

    热阻数据:估算TJ时涉及到的θJA和ΨJT -其2-

  6. TD1-9_f3

    热阻数据: 估算TJ时涉及到的θJA和ΨJT -其1-

  7. 热阻数据:热阻和热特性参数的定义

  8. 热阻数据:JEDEC标准及热阻测量环境和电路板

  9. 热阻和散热的基础知识:辐射中的热阻

TECH INFO

  • 重点必看
  • 技术分享
  • Arduino入门指南

基础知识

  • Si功率元器件
  • IGBT功率元器件
  • 热设计
  • 仿真
  • 开关噪声-EMC
  • AC/DC
  • DC/DC
  • 电机
  • 传递函数

工程技巧


PICK UP!

  1. 刘铭
  2. ROHM开发出业界先进的第4代低导通电阻
PAGE TOP