三相全波无刷电机的结构

从本文开始,我们将介绍三相无刷电机的结构、三相无刷电机的工作原理及三相无刷电机的驱动方法等内容。首先是三相无刷电机的结构。

三相全波无刷电机的外观和结构

下图为无刷电机的外观和结构示例。

无刷电机的外观和结构示例

左侧是用来旋转光盘播放设备中的光盘的主轴电机示例。共有三相×3共9个线圈。右侧是FDD设备的主轴电机示例,共有12个线圈(三相×4)。线圈被固定在电路板上,并缠绕在铁芯上。

在线圈右侧的盘状部件是永磁体转子。外围是永磁体,转子的轴插入线圈的中心部位并覆盖住线圈部分,永磁体围绕在线圈的外围。

三相全波无刷电机的内部结构图和线圈连接等效电路

接下来是内部结构简图和线圈连接等效电路示意图。

该内部结构简图是结构很简单的2极(2个磁体)3槽(3个线圈)电机示例。它类似于极数和槽数相同的有刷电机结构,但线圈侧是固定的,磁体可以旋转。当然,没有电刷。

在这种情况下,线圈采用Y形接法,使用半导体元件为线圈供给电流,根据旋转的磁体位置来控制电流的流入和流出。在该示例中,使用霍尔元件来检测磁体的位置。霍尔元件配置在线圈和线圈之间,根据磁场强度检测产生的电压并用作位置信息。在前面给出的FDD主轴电机的图像中,也可以看到在线圈和线圈之间有用来检测位置的霍尔元件(线圈的上方)。

霍尔元件是众所周知的磁传感器。可将磁场的大小转换为电压的大小,并以正负来表示磁场的方向。下面是显示霍尔效应的示意图。

霍尔元件利用了“当电流IH流过半导体并且磁通B与电流成直角穿过时,会在垂直于电流和磁场的方向上产生电压VH”的这种现象,美国物理学家Edwin Herbert Hall(埃德温·赫伯特·霍尔)发现了这种现象并将其称为“霍尔效应”。产生的电压VH由下列公式表示。

VH = (KH / d)・IH・B  ※KH:霍尔系数,d:磁通穿透面的厚度

如公式所示,电流越大,电压越高。常利用这个特性来检测转子(磁体)的位置。

下一篇将会介绍三相全波无刷电机的工作原理。

数据来源:
Photo P60_1 SOLITON 36 SPECIAL REPORT 小型电机的选择与控制技术 萩野弘司著
Photo P60_2 https://ja.wikipedia.org/ 无整流子电动机

关键要点:

・三相无刷电机的线圈被固定在电路板上,并缠绕在铁芯上。

・三相无刷电机的线圈是固定的,永磁体(转子)在外侧旋转。

・三相无刷电机通常使用霍尔元件来检测转子(磁体)的位置。

电机设计的技术资料 免费 下载

相关文章

  1. 三相全波无刷电机的位置检测

  2. 总结:三相全波无刷电机的特征与用途

  3. 无传感器120度驱动的启动方法二:通过检测永磁体停止位置来启动

  4. 三相全波无刷电机的旋转原理

  5. 三相全波无刷电机的驱动:无传感器120度驱动

  6. 三相全波无刷电机的驱动:如何使施加于电机的电压更大

  7. 三相全波无刷电机的驱动:超前角控制

  8. 三相全波无刷电机的驱动: 有传感器、正弦波激励PWM驱动

  9. 三相全波无刷电机的驱动:有传感器、120度激励线性电流驱动

TECH INFO

  • 重点必看
  • 技术分享
  • Arduino入门指南

基础知识

  • Si功率元器件
  • IGBT功率元器件
  • 热设计
  • 仿真
  • 开关噪声-EMC
  • AC/DC
  • DC/DC
  • 电机
  • 传递函数

工程技巧


PICK UP!

  1. 刘铭
  2. ROHM开发出业界先进的第4代低导通电阻
PAGE TOP