本文的关键要点
・在逆变电路工作时,会产生体二极管的反向恢复电流。
・反向恢复时间和反向恢复电流过大会导致损耗增加,这对于逆变电路而言是一个不利因素。
・通过使用反向恢复时间和反向恢复电流峰值小的MOSFET,可以减少逆变电路中的损耗,降低MOSFET损坏的风险。
- ■逆变电路的种类和通电方式
- ■三相调制逆变电路的基本工作
- ■通过双脉冲测试比较PrestoMOS™与普通SJ MOSFET的损耗(实际测试结果)
- ■通过三相调制逆变电路比较PrestoMOS™与普通SJ MOSFET的效率(仿真)
三相调制逆变电路的基本工作
图6为U相的三相调制逆变电路时序图。由于在U相呈正极性时High Side(Q1)会进行励磁,因此栅极驱动信号的占空比会随着接近U相电流峰值而逐渐增加,随着接近负极性而逐渐减小,并在U相呈负极性时进行续流。当U相呈负极性时则相反,Low Side(Q2)会进行励磁,并在U相呈正极性时续流。
在这种驱动模式下,V相和W相也执行同样的PWM工作和续流工作,因此具有三相在AC输出的任何时间点均可进行切换的特点,称之为“三相调制”。
各开关时间点的占空比D(t)可以使用逆变器输
出AC频率f和相位差θ,通过以下公式表示:
其中,Dmax是AC输出峰值时的占空比,被称为“调制因数”。
图7为U相电流峰值附近(正极性)的U相电流波形和各相晶体管(Q1/Q2、Q3/Q4、Q5/Q6)的栅极驱动波形。
下面我们将U相电流峰值附近用来在电感器中积蓄能量的励磁开关——U相High Side(Q1)从ON到OFF再到ON的区间,分为(1)~(13)个工作模式分别进行说明。下面的图表示从U相看的电流路径变化。
Mode(1)
|
|
Mode(2)
|
|
Mode(3)
|
|
Mode(4)
|
|
Mode(5)
|
|
Mode(6)
|
|
Mode(7)
|
|
Mode(8)
|
|
Mode(9)
|
|
Mode(10)
|
|
Mode(11)
|
|
Mode(12-1)
|
|
Mode(12-2)
|
|
Mode(13)
|
通过这样的工作过程,会产生Mode(12-2)中那样的体二极管反向恢复电流。Q1~Q6都会产生该体二极管的反向恢复电流,因此对于逆变电路而言,反向恢复特性的好坏非常重要。该反向恢复电流的不良影响如下:
●当反向恢复电流(峰值电流)较大时,
例如像Mode(12-2)所示,当Q1导通时,会流过Q2的反向恢复电流。如果反向恢复电流峰值Irr较大,则Q1中将流过过大的电流。此时,如果超过MOSFET的额定值(如果电流密度变大),漏极-源极之间将发生短路,处于桥臂短路状态,可能会导致Q1和Q2的MOSFET损坏。
●在反向恢复时间较长的情况下,
流过体二极管的反向恢复电流时,在Mode(12-2)下,当Q2的体二极管导通时,Q1的漏极和源极之间将被施加Vin量的电压。此时的导通开关波形如图11所示。反向恢复时间trr越长,导通时Q1的漏极电流ID(t)流动的时间越长,在漏极和源极之间施加电压VDS(t)的时间越长。此时的开关损耗PSW通过下列公式来表示(TS为1个开关周期)。
从公式(2)可以看出,损耗能量EON是ID(t)和VDS(t)的积乘以时间所得到的面积分,可见,反向恢复越慢,开关损耗越大。在逆变电路中,流过电感器的电流会变为正弦波状,因此导通时的反向恢复电流会随开关时序发生变化。也就是说,越接近正弦波峰值附近,反向恢复电流越大。所以,对于在正弦波峰值附近的开关工作,要特别注意反向恢复电流引起的损耗会增加这一情况。
综上所述,反向恢复时间和反向恢复电流过大对于逆变电路而言是一个不利因素。通过使用反向恢复时间短且反向恢复电流峰值小的MOSFET,可以减少逆变电路中的损耗,并降低开关器件损坏的风险。
通常而言,会通过双脉冲测试对逆变电路的单桥臂进行评估。在下一篇文章中,我们将通过双脉冲测试对反向恢复特性优异的MOSFET和普通SJ MOSFET的损耗进行比较。