探讨高输出电流应用时的注意事项 其2

上一篇文章中,介绍了在探讨输出电流较大的应用时应该注意的两个注意事项中的第一项。关键要点是要想提高输出电流,需要使用导通电阻低的MOSFET,提高开关速度,并选用DCR低的电感。本文将介绍注意事项中的第二项。

探讨高输出电流应用时的注意事项 其2

如上一篇文章中所介绍的,要想提高输出电流,需要使用导通电阻小的MOSFET。然而,高耐压且低导通电阻的MOSFET通常会具有较大的栅极电容,并且往往具有较高的Qg,因此,需要注意栅极电荷损耗。

下面将在此前使用的条件下,在栅极电荷Qg具有从1nC到50nC的范围条件下,来探讨损耗。

・栅极电荷损耗
  栅极电荷损耗

table

下图表示Qg和损耗之间的关系。当Qg增加时,栅极电荷损耗也会随之增加。

损耗Qg图

对策

作为应对这种损耗增加问题的对策,可探讨使用输出电流增加时所需的低导通电阻的MOSFET,且Qg低的MOSFET。实际上存在导通电阻低且Qg足够低的MOSFET,这是可以避免的问题。

需要注意的是,Qg低的MOSFET可能会具有急剧的开关上升/下降,这可能会导致开关噪声变大。虽然这种对策具有提高开关速度、降低开关损耗的优点,但需要充分评估EMI问题,也需要考虑PCB设计。

总结

由于探讨高输出电流应用时的注意事项是分两篇文章进行介绍的,因此在此作一下总结。

在探讨输出电流大的应用时,需要使用导通电阻低的MOSFET,提高开关速度,并选择DCR低的电感。

关于MOSFET,需要选择导通电阻低、Qg低的产品。在这种情况下,开关速度往往会提高,因此需要确认开关噪声是否有增加。

Related post

  1. 小结

  2. 电源IC的功率损耗计算示例

  3. 损耗的简单计算方法

  4. 损耗探讨 前言

  5. 同步整流降压转换器的开关损耗

  6. 探讨高输入电压应用时的注意事项

  7. 损耗因素

  8. 同步整流降压转换器的栅极电荷损耗

  9. 损耗探讨 小结

TECH INFO

  • 重点必看
  • 技术分享
  • Arduino入门指南

基础知识

  • SiC功率元器件
  • Si功率元器件
  • 热设计
  • 仿真
  • 开关噪声-EMC
  • AC/DC
  • DC/DC
  • 电机
  • 传递函数

工程技巧


PICK UP!

  1. 刘铭
  2. “第三代 行驶中无线供电轮毂电机”开发成功:超小型SiC模块 助力实现无需担心充电的EV
  3. arduino explorer rover
  4. 作为车载用二次电源而开发的同步整流降压型DC/DC转换器 : 车载设备中二次电源的优点
  5. 模块配置
  6. ROHM开发出业界先进的第4代低导通电阻SiC MOSFET:支持xEV/EV主机逆变器和电池提高电压
  7. 以纳米级输出电容实现稳定控制的Nano Cap™技术:无需输出电容器的线性稳压器
PAGE TOP