本文的关键要点
・通过减少谐振能量和电感分量可以降低振铃。
・通过提高高边开关的速度,可以减少导通延迟和反向恢复电流,从而可以减少谐振能量。
・应降低输出环路中电感分量最大的输出电容器的ESL。
・由低边开关、高边开关和输出电容器形成的输出环路本身就具有电感分量,因此在设计电路板时应尽可能地减小环路面积。
・由于LC谐振无法降到零,因此如果存在噪声问题,可以在输出端安装由铁氧体磁珠和小型低容量陶瓷电容器组成的LC低通滤波电路来消除噪声。
目录
本文介绍第二个主题“升压型DC-DC转换器中高频噪声的抑制方法”。
- 升压型DC-DC转换器中高频噪声的产生原因
- 升压型DC-DC转换器中高频噪声的抑制方法
关于如何降低升压电源中产生的高频噪声,将分“通过减少谐振能量和电感量来降低高频噪声”、“提高导通速度和尽可能减小反向恢复电流”、“尽可能减小输出环路中的电感分量”、“通过元器件配置和图案设计尽可能减小输出环路面积”和“谐振无法降为零,因此增加LC滤波器”几部分进行说明。
通过减少谐振能量和电感量来降低高频噪声
要想降低高频噪声,就需要减少引发低边开关ON/OFF时振铃的能量。另外,当能量在电感分量和电容分量之间传递时,会引发LC谐振,因此如果没有电感或电容,就不会发生谐振。减少输出环路的电感分量即可减少所积蓄的能量,从而可以减小LC谐振并降低高频噪声。
提高导通速度和尽可能减小反向恢复电流
要想减少引发低边开关关断时振铃的能量,需要减少开关节点电压VSW的过冲。要想减少高边开关的导通延迟,需要选择导通延迟较小的高速二极管。
要想减少低边开关导通时产生的振铃能量,需要减小反向恢复电流。如果是输出电压较低的二极管整流,则需要使用肖特基势垒二极管。与PN结硅二极管不同,肖特基势垒二极管由于不使用空穴进行整流,因此不会流过反向恢复电流,并且其VF也低于硅二极管,效率也更高。但反向偏压时反向流动的漏电流比硅二极管的要大,因此当输出电压较高且在高温环境下使用时,需要注意防止热失控。如果输出电压高达数百伏,由于反向耐压和热失控问题而无法使用肖特基势垒二极管,则可以使用快恢复二极管,它是硅二极管的一种,其反向恢复电流较小。虽然快恢复二极管的VF比普通硅二极管要高,但在输出电压较高的情况下,对效率下降的影响很小。
在采用二极管整流方式的情况下,选择二极管时需要注意的是,同步整流时高边开关所用的FET中有寄生二极管,并且无法从FET中去除,因此无法更换为高性能的二极管。死区时间内有电流流过寄生二极管,但寄生二极管相当于PN结硅二极管,其作为二极管的特性并不好。因此,在采用同步整流方式时,需要通过尽可能缩短死区时间,并控制栅极驱动时序使流过二极管的电流尽可能小,从而使导通延迟和反向恢复电流尽可能小。
尽可能减小输出环路中的电感分量
高边开关导通后,高速脉冲电流流入输出电容器。但是,受输出电容器的ESL影响会产生反电动势,在输出电容器中也会产生脉冲状高电压,其后流过的电流会使磁能积蓄在ESL中并成为谐振的能量源。通过选择ESL低的产品作为输出电容器,可以降低脉冲电压的峰值,另外由于积蓄的能量减少而可以减少谐振,最终可以降低高频噪声。但是,由于升压型DC-DC转换器需要高耐压且大容量的电容器,这会导致其物理尺寸较大,因而很难找到ESL小的电容器。在这种情况下可以考虑并联容量为1/N的N个电容器,而不是使用1个大容量电容器。这样通过减小每个电容器的尺寸来降低ESL,并且通过并联连接将ESL进一步降低至1/N。然而,这种方法虽然有效,却会因数量N的增加而导致元器件综合成本上升,存在成本问题。
此外,还可以通过增加小容量的小型陶瓷电容器来降低输出环路中的ESL。高边开关导通时,在输出电容器中产生的高速电流波动存在时间为数ns~数十ns。如果流过的电流为几安培,则其电荷量仅为100nC左右,因此,即使是低于1μF的小容量电容器,只要ESL低,接收到这个量的电荷量也不会发生较大的电压上升情况。当然,具体情况也会因电感电流的大小而异,但对于小容量电源而言,可以考虑在高边开关的输出侧和低边开关的接地侧之间配置0.1μF左右的小型陶瓷电容器,在配置时要使这两侧之间的距离尽可能短。这样就无需经由输出电容器的较大ESL了,从而可以更大程度地减少输出环路的电感分量。
通过元器件配置和图案设计尽可能减小输出环路面积
在输出环路的电感分量中,输出电容器的ESL所占比例最大。通过并联小容量的小型陶瓷电容器,可以大幅降低ESL带来的电感量。然而,连接元器件的电路板图案布线也会产生电感量,输出环路本身也会成为一圈电感。通过尽可能减小元器件之间的布线距离,可以减少布线产生的电感量。另外,一个输出环路本身具有的电感量与环路面积是成正比的,因此在设计元器件布局时应尽量减小环路面积。另外,还可以通过扩展元器件之间布线的图案宽度来填充环路内的空间,从而使环路面积更小。
此外,输出环路中会产生谐振并流过谐振电流,流经环路的高频谐振电流会在周围空间形成高频变化的磁场。这种高频变化的磁场可能会成为EMI(电磁干扰)并在空间中传播,使噪声向周围扩散。流经环路的高频电流所产生的空间磁场的强度也与环路面积成正比。缩小环路面积不仅可以减少产生的噪声量,还可以减少辐射到空间中的EMI,因此尽可能减少环路面积是噪声对策中非常重要的措施。
谐振无法降为零,因此增加LC滤波器
低边开关FET的COSS无法降为零,输出环路的电感分量也无法降为零,加上开关的导通和关断速度越来越快,所以无法完全消除高频噪声。有一种方法可以有效防止输出中产生的高频噪声传输到负载电路中,即在电源输出线路中插入LC低通滤波器。这种LC低通滤波器使用了可有效消除几百MHz频段噪声的铁氧体磁珠,以及在几百MHz频段具有低ESL特性的1000pF级小型陶瓷电容器。
尤其是铁氧体磁珠,其在高频下的阻抗大部分是电阻分量,能够通过电阻分量以焦耳热的形式消耗高频电能,因此是非常有效的降噪部件。
【资料下载】开关稳压器基础
推荐阅读 同一主题文章一览
- 降低升压电源输出中的开关噪声 -前言-
- 升压型DC-DC转换器中高频噪声的产生原因
- 升压型DC-DC转换器中高频噪声的抑制方法【在读】