二极管整流和同步整流的效率比较

本文给出了一组数据,是二次侧替换前的二极管整流方式AC/DC转换器和将二次侧替换为二次侧同步整流用电源IC BM1R00147F之后的AC/DC转换器的效率比较数据。

二次侧二极管整流方式AC/DC转换器和二次侧同步整流方式AC/DC转换器的效率比较

本系列文章探讨了旨在将现有二次侧二极管整流方式AC/DC转换器的二次侧替换为二次侧同步整流用电源IC,改为同步整流方式来改善效率的设计案例。这里给出使用替换前的二次侧二极管整流方式、替换为BM1R00147F后的高边型和低边型共3种评估板实测效率得出的结果。测试条件为输入电压400VDC、输出电压5VDC、输出电流0~10A。

效率数据、效率数据放大图

左图为输出电流(Iout)整个范围的效率。橙色曲线是替换前的二极管整流方式的效率。蓝色和红色为替换为同步整流方式后的效率,蓝色为低边型,红色为高边型。由于两者的效率几乎同等,所以高边型的红色曲线隐藏在低边型的蓝色曲线后面。从图中还可以看出橙色的二极管整流方式的效率较差,右侧是将纵轴放大后的图。

结果表明,在最大负载10A条件下,替换前的二次侧二极管整流方式的效率为77.3%,替换后为81.3%(低边)和81.6%(高边),效率提高了4%。

该效率差主要是二次侧整流二极管和替换后的MOSFET的损耗差。二次侧整流二极管通常使用FRD(快速恢复二极管)和SBD(肖特基势垒二极管)等。案例中的电源所使用的这些二极管的VF通常为0.5A~1V左右,因此根据简单的传导损耗公式VF×Iout,假设VF为1V,计算当Iout=10A时的损耗,得出10W的传导损耗。而用于替换的MOSFET的传导损耗Ron×Iout2,在Ron=4mΩ(根据MOSFET规格)时仅为0.4W,是二极管的1/25。

当然,实际的效率必须考虑开关损耗等其他损耗因素,因此不会这样简单地比较,但二次侧整流元件的损耗是主要损耗,这一点是可以理解的。所以可以说,在无法显著改善二极管自身VF特性的情况下,改为二次侧同步整流方式是大幅改善二次侧二极管整流方式AC/DC转换器效率的有效选择。

下面给出所用评估板的电路图和部件表作为参考。请注意,这里提到的效率仅是该评估中的结果,效率可能会因所使用部件的特性波动和PCB布局等的不同而有所变动。

BM1R00147F评估电路图

BM1R00147F评估电路图 部件表

BM1R00147F评估电路图high side type

BM1R00147F评估电路图 部件表high side type

下一篇文章计划介绍PCB布局的注意事项。

相关文章

  1. ACDC

    总结

  2. a6-14_r1_f1

    实装PCB板布局相关的注意事项

  3. A6-12_f1

    故障排除(Trouble Shooting) ③:当VDS2受浪涌影响超过二次侧MOSFET的VDS…

  4. 前言-提高AC/DC转换器效率的二次侧同步整流电路设计 图1

    提高AC/DC转换器效率的二次侧同步整流电路设计 前言

  5. A6-11_f01

    故障排除(Trouble Shooting) ② : 当二次侧MOSFET在轻负载时因谐振动作而导通…

  6. A6-10_f01

    故障排除(Trouble Shooting)① : 当二次侧MOSFET立即关断时

  7. MAX_TON引脚C1、R3设置

    同步整流电路部分:外围电路部件的选型-MAX_TON引脚的C1、R3以及VCC引脚

  8. 内置分流稳压器部分 电路图

    分流稳压器电路部分:外围电路部件的选型

  9. 二次侧同步整流部分的框图

    同步整流电路部分:外围电路部件的选型-DRAIN引脚的D1、R1、R2

TECH INFO

  • Sugiken老师的电机驱动器课堂
  • 重点必看
  • 技术分享
  • Arduino入门指南

基础知识

  • Si功率元器件
  • IGBT功率元器件
  • 热设计
  • 电路仿真
  • 开关噪声-EMC
  • AC/DC
  • DC/DC
  • 电机
  • 传递函数

工程技巧


Sugiken老师的电机驱动器课堂

PICK UP

PAGE TOP