如同“设计步骤”项目中所说明般,在一开始设计时,必须决定电源具备哪些性能和特性,确定电源规格。
其实,电源规格并非单方面由电源设计人员决定就好。除了要求输入电源和供电负载的电压精度、电流等之外,还必须确认效率和工作温度范围等事项。而这些都是依照系统整体规格和供电基板规格来决定。
然而,现实上并不是一开始设计时,就已经确认这些规格。不是只有供电电路的设计人员疏忽而已,如果供电端未设计至某一个程度,也无法确定要设计什么样的电源规格。
虽说如此,如果要等全部明确才要设计,无庸置疑地,设计时间已经快要结束,只剩下极少的时间能用在电源设计上。因此,在某个时间点先根据大略的数据,在可以变更的前提下,于容许范围内弹性设计电源规格。
在开始设计前,须先写好原本要决定的规格,以及设计开始时,能允许的最低限度规格。
应决定的电源规格
- 输入输出:输入电压范围、输出电压值和精度
- 负载:电流、有无瞬态(含休眠/唤醒)
- 效率、待机功耗
- 温度:最大/最小值、是否冷却
- 尺寸:安装面积、高度(外形尺寸)
- 必要的保护:低电压、过电压、过热等
- 特殊环境/使用条件:车载、航天、通信、RF等
- 必须取得的认证和规范
- 成本
接下来将具体说明“最低限度电源规格”的各项目。
・输入电压范围
输入,因其是AC/DC转换器,理所当然是AC电源了。幸运的是家庭和办公室用的AC电源是公称电压。日本公称电压为100VAC,以全球的情况来说,都在100VAC~240VAC的范围内。此外,因为是公称值,如果包含容许差在内,大多会设想下限-15%的85VAC、上限+10%的264V范围内。电源方面会视国家而定,在定容许差时,必须根据过往经验和掌握实际情况才行。以此方式,根据搭载设计电源的设备的出货地,来决定输入电压范围值。
世界家庭用主要电源电压(公称值)
日本:100VAC
美国:120VAC
加拿大:120VAC/240VAC
英国:230VAC/240VAC
俄罗斯:127VAC/220VAC
中国:110VAC/220VAC
・输出电压/精度/电流
AC/DC转换器的输出电压,设定系统或电路基板必要的DC电压值。以工业设备为例,一般设定24VDC和12VDC等共通标准电压,但目前也有不少设备直接设定5VDC和3.3VDC等驱动电压。总之,都必须达到输出电压±5%的精度。这是依据被供电设备的要求来决定。在设计时,必须讨论能够满足要求精度的部件和方式。
输出规格中,输出电流也是非常重要的。必须充分供应能满足供电电路需要的电流,且维持输出电压稳定化。虽然余量大,容许范围广,但部件成本高和尺寸大,在此之下,最大负载电流相关数据就显得非常重要。此外,还要探讨发生负载瞬态的响应特性。不足时,就可能造成系统复位等,对系统带来致命的损害。
讨论电流值后,当根据AC/DC转换器的输出状况,以个别的开关稳压器组成电源时,能依据功率状况来思考电流值。开关稳压器是转换功率,因此AC/DC转换器制作出12VDC,将其当作输入电流切,开关稳压器的效率达80%,转换成5V/0.8A,但输入功率则是变成5W。单纯来看,AC/DC转换器的12V输出值转换成5W,因此输出电流只要0.42A即可。转换功率用的电源,其输出能力大多以功率值表示。
・输出纹波电压
纹波就是脉流。转换后的DC电压,包含着与输入AC电源频率、开关转换频率相关的脉动电流。当然,在转换的过程中会进行平滑/滤波,但却无法归零。例如输出以5VDC为中心,产生400mVp-p的纹波时,最大值为5.2V,最小值为4.8V。对此,5V±4%能满足一般精度要求±5%,但输入3.3V输出,产生400mVp-p的纹波时,就会变成3.3V±6%。
AC/DC转换器会制作称为12VDC的总线电压,将其当作输入电压,再利用个别的稳压器等,产生各电路必要的电压,或许能够舒缓AC/DC转换器的纹波问题。不过,在上述范例中,如果直接供电给低电压设备,纹波电压就可能造成某些问题。总之,虽然纹波电压愈小愈好,但仍要考虑到滤波器设定空间和成本,来设定容许值。
・绝缘耐压
视系统的规格而定,有时AC/DC转换器必须能够绝缘。工业设备和医疗设备等基本上必须绝缘,且可能会指定绝缘等级。AC/DC转换器的绝缘指一次侧(AC输入),和二次侧(DC输出)无法导通,基本上由变压器负责绝缘的工作。绝缘除了3kVAC的电压外,还必须讨论绝缘构造、绝缘等级等规格相关事项。设计变压器的人必须具备规范和部件方面的知识才行。各个详细内容请参照规格书等。
・工作温度范围
应该要设定搭载设计电源的系统,以及设备工作温度范围等规格。AC/DC转换器必须由符合要求的功率控制IC和部件组成。此外,虽然大多以周围温度标示设备规格,但AC/DC转换器如果装设在内部,就必须以内部温度为基准来决定规格。AC/DC转换器会少量发热,一但超过所用部件的额定值,将可能发生致命的损坏,因此温度方面必须充分进行验证。
・效率
效率是指针对输入功率的输出功率的比率,以%表示。效率达80%代表损耗20%,损耗基本上会变成热。现今提升效率已是必备要件,也因此必须充分理解和热相关的事物。
为了提升效率,必须探讨使用变压器方式、控制IC、外置部件。
・无负载时输入功率
输出电流不流动时的输入功率,也就是无负载时的自我功耗。节能化已经是设备的责任和义务,必须将毫无用处的自我损耗降至最低才行。EnergyStar即是其中一例。电路组成和控制IC在降低自我功耗上,扮演着非常重要的角色。
以上内容为最低限度,但可能因为各种原因,造成上述数据和自己遇到的情形不同。此时,就必须根据经验法则,判断电源拥有哪一种程度的性能和特性,就能够广泛支持各项条件要求。最重要的就是先了解能修正变更或全部重做后,再开始进行设计。修