所谓SiC-SBD-与Si-PND的反向恢复特性比较

面对SiC-SBD和Si-PND的特征进行了比较。接下来比较SiC-SBD和Si-PND的反向恢复特性。反向恢复特性是二极管、特别是高速型二极管的基本且重要的参数,所以不仅要比较trr的数值,还要理解其波形和温度特性,这样有助于有效使用二极管。

SiC-SBD和Si-PND的反向恢复特性的不同

首先,反向恢复或恢复是指二极管在呈反向偏置状态时,无法立即完全关断,有时会出现反向电流的现象。trr是其反向电流的流动时间。此时,前文提到SiC-SBD的trr比包含Si-FRD在内的Si-PND高速。下面我们来了解其原因和实际特性。

简单地说,trr的速度和反向恢复特性的不同是因为二极管构造不同。这就需要谈到在半导体中移动的电子和空穴。先通过波形图来了解SiC-SBD和Si-PND反向恢复特性的不同。

右侧波形图为SiC-SBD和高速PND即Si-FRD反向恢复时的电流和时间。从波形图可见红色的SiC-SBD反向电流少,trr也短。顺便一提,本特性因为反向电流的损耗而需要进行研究探讨。

Si-PND 和SiC-SBD的反向恢复时间特性

在这里,通过各二极管的断面图进行介绍。下图为Si-PND的偏置从正向偏置转换为反向偏置时电子和空穴的移动。

正向偏置时注入载流子,通过空穴和电子的重新结合使电流流动。如果是反向偏置的话,n层的空穴(少数载流子)会花些时间返回p层,到完全返回为止(一部分因为寿命而消失)均有电流流动。这就是反向恢复电流。

Si-PND(FRD等)转换为反向偏置时
SiC-SBD转换为反向偏置时

第2个图为SiC-SBD转换为反向偏置时的示意图。因肖特基势垒结构而不存在PN结,所以没有少数载流子,在反向偏置时n层的多数载流子(电子)只需要返回,因此只需要很少的反向恢复时间,其关断时间比PND明显缩短。

这种反向恢复时间的差异均因为二极管结构。因此,Si-SBD的反向恢复也是高速。然而,Si-SBD现状的耐压界限是200V左右,在比其更高的电压下不能使用。而使用SiC的话,可以做出超过600V的高耐压SBD。这就是SiC-SBD的一大优点。

下面是反向恢复特性的温度依赖性和电流依赖性相关数据。

反向恢复特性的温度依赖性和电流依赖性相关数据

上段的波形图和图表表示不同温度的不同反向恢复特性。Si-FRD的温度上升时载流子浓度也随之上升,因此需要相应的反向恢复时间。随着室温的增高,反向电流和trr也会变大。而SiC-SBD因为SiC本身基本上没有温度依赖性,所以反向电流特性基本没有变化。将trr的差制作了右上的图表,通过对两种Si-FRD的比较,发现SiC-SBD的trr基本上不存在温度依赖性。

下段的波形图表示与正向偏置时的正向电流IF的关系。由波形图可观察到SiC-SBD几乎不受影响。

最后,虽然前面表述为SiC–SBD几乎没有反向电流,在波形图里可明显看出SiC-SBD比Si-FRD少很多,但也不是一点没有。这是因为二极管中寄生的结电容带来的影响。因此,SiC-SBD与Si-PND相比,反向电流并不是零,而是明显减少。

开关稳压器的基础:同步式和异步式的区别

不仅要了解电气规格, 还要了解包括材料和规格在内的特性

相关文章

  1. SiC_2-6_rel

    所谓SiC-SBD-关于可靠性试验

  2. SiC_2-5_comptrr

    所谓SiC-SBD-使用SiC-SBD的优势

  3. SiC_2-4_vf

    所谓SiC-SBD-SiC-SBD的发展历程

  4. SiC_2-3_vfcompa

    所谓SiC-SBD-与Si-PND的正向电压比较

  5. SiC_2-1_sicsky

    所谓SiC-SBD-特征以及与Si二极管的比较

基础知识

EMC


TECH INFO

  • Sugiken老师的电机驱动器课堂
  • 重点必看
  • 技术分享
  • Arduino入门指南
  • Raspberry Pi初学者指南
  • 技术动态
PAGE TOP